
Proceedings of the 11 th Brazilian Congress of Thermal Sciences and Engineering � ENCIT 2006
Braz. Soc. of Mechanical Sciences and Engineering � ABCM, Curitiba, Brazil, Dec. 5-8, 2006

Paper CIT06-0951

A STABILIZED FINITE ELEMENT METHOD FOR UNSTEADY POLLU-
TION DISPERSION IN RIVERS

Rafael de Mello Pereira
University of Brasilia. Department of Mechanical Engineering.
Laboratory of Energy and Environment. 70910-900 Brasilia. DF. Brazil.
mp.rafael@gmail.com

Antonio C. P. Brasil Junior
University of Brasilia. Department of Mechanical Engineering.
Laboratory of Energy and Environment. 70910-900 Brasilia. DF. Brazil.
brasiljr@unb.br

Alan Cavalcanti da Cunha
Instituto de Pequisas Cientí�cas e Tecnológicas do Estado do Amapá.
Centro de Pesquisas Aquáticas.
brasiljr@unb.br

Abstract. In this work a stabilized �nite element method is proposed for the simulation of unsteady pollution in
rivers. The pollution constituents transport is modeled using a set of one dimensional and transient convection-
reaction-di�usion equations. The boundary conditions can vary on time, and all constituents can interact with
each other dynamically. The proposed numerical method is validated using an analytical test case associated
with the advection of a pollution front considering time periodic boundary conditions. The DO-BOD model was
implemented and the numerical results for a real channel and river pollution problem is analyzed, comparing it to
the experimental data.
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1. Introduction

The understand of the dynamic characteristic of river pollution transport is fundamental in many environ-
mental problems related to the transient dispersion of chemical or organic compounds. The transient behavior
of the river �ow in�uences the concentrations of chemical or biological compounds and its decay after its release
from the sources positions. It can compromise the environmental health of the river, considering a admissible
maximum concentration of a given specie at any time and any position in the stream. A steady-state analysis
based in the time mean values cannot be used to describe this kind of situation.

The unsteady behavior of pollution problem is taken into account in many modern simulation tools, like
EDP-RIV1 from USA-EPA or MIKE from DHI for instance. Considering this kind of problem, fast and robust
numerical solution schemes have to be implemented in order to provide stable results, without introduction of
excessive numerical viscosity.

The space and time dispersion of contaminants have been explored in some works concerning the implemen-
tations of numerical schemes. Fischer et al., 1998 had proposed a group of criteria for the numerical simulation
of unsteady contaminant transport in rivers. The absence of oscillations in the solution (stable schemes), re-
duced truncation error and reduced distortion of short-wavelength Fourier components are the main properties
required to the numerical schemes.

2. Mathematical Formulation

In the present paper unsteady pollutant transport in an open channel (or river) is considered. A reference
axis x along the stream is assumed, and the �ow carries a set of species {i = 1, N} diluted in water at a
concentration Ci(x, t). The concentrations of the species are distributed through the river Ω ≡ {x | x ∈ [0, L]},
where the transport problem is modeled by a set of unsteady advection-di�usion equations given by:

∂(ACi)
∂t

+
∂(uACi)

∂x
=

∂

∂x

(
DiA

∂Ci

∂x

)
+ ASi (1)

1



Proceedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0951

In this equation A(x) denotes the area of the river cross-section and u(x) is the local velocity of the stream
(a plug �ow is considered). The distribution of those variables in the stream direction is given from the
hydrological and bathymetric river database. The variables Di and Si denote respectively the longitudinal
dispersion coe�cient and the source term related to the production or destruction of the specie i.

This general formulation can reproduce a great number of pollution problems in rivers. Detailed aspects of
chemical or biological pollution dynamics can be taken into account for each constituent equation by means of
the modeling of di�usion and source terms, (Porto, 1991).

Considering here our attention to organic pollution problems, the classical DO-BOD model will be used.
This simple model for organic pollution in rivers takes into account only two species: The dissolved oxygen
(DO) and the bio-chemical oxygen demand (BOD).

3. Numerical Method

This section present the numerical method used to solve the more generic transport equations Eq. (2). The
methodology presented here is one of many variants of a class of methods known as Characteristic-Galerkin
Procedure. This kind of methodology has been used with success as early as, Adey and Brebbia, 1974. The
Characteristic-Galerkin method variant used in this work was �rst published by Löhner et al., 1984 and is
described in details in other works Löhner et al., 1985 and O. C. Zienkiewicz, 2000b.

∂φ

∂t
+ u

∂φ
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− ∂
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+ Q = 0 (2)

If the equation above is represented in a reference system convected with the �ow such that:

dx′i = dxi − uidt (3)

Noting that for φ = φ(x′t, t)
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In this new coordinate system convected with the �ow eq. (2) becomes simple:
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)
+ Q(x′) = 0 (5)

The time discretization of eq. (5) along a characteristic line, or a line convected with the �ow results in eq.
(6). In this equation α is 0 for the explicit form, between zero and one for the semi-implicit form and equal one
for the implicit form.
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Substituting the terms evaluated in (x + δ) by Taylor series expansion shown in eq. (7), (8) and (9).
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Now it is necessary to calculate a approximation for the distance traveled by the particle. There are many
forms to calculate this distance, each one leading to di�erent stabilization terms. The approximations employed
in this work for velocity and distance are presented in eq. (10), (11) and (12).

δ = u∆t (10)

u =
un+1 + un|(x−δ)

2
(11)

un|(x−δ) ≈ un −∆tun ∂un

∂x
+ O(∆t2) (12)

Substituting the Taylor expansion presented in eq. (7), (8) and (9) and the estimative for velocity and
traveled distance, δ, we have:
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and,

un+ 1
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2
(15)

In order to obtain the fully explicit form the terms evaluate in
(
n + 1

2

)
are approximated by terms in n.

Equation (16) shows this for the velocity term and the di�usion term is treated in a similar way.

un+ 1
2 = un + O(∆t) (16)

For the fully explicit form:
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3.1. Spacial Discretization

The spatial discretization of the equation above is possible without any stabilization problem using the
Galerkin method. The method is conditional stable even for high Peclet number but this stability depends on
the time step used Codina and Zienkiewicz, 2002.

Equation (18) present the interpolation of scalar inside de element, where, φ̃, are the scalar values evaluated
in the element nodes, N, is the conventional �nite element shape function. Utilizing time approximation given
by (17) and the Galerkin method in it classical form O. C. Zienkiewicz, 2000a, Hughes, 1987 where the weighting
function is the shape function N , it is possible to �nd (19).

φ = Nφ̃ (18)
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M(φ̃n+1 − φ̃n) = −∆t[(Cφ̃n + Kφ̃n + fn)−∆t(Kuφ̃n + fns )] (19)

M is the mass matrix and can be treated is its condensed or lumped form Reddy, 1985, Lax and Wendro�,
1960. The treatment of mass matrix this way makes the solutions evident but introduce a new approximation
to the problem. In this work the mass matrix is always treated in its lumped form.

The di�usion e�ect is represented by K, this matrix is simetrical and positivi de�ned. But the convective
term in this equation, C is assimetrical. The f and fs terms represent the source and the source correction for
high Peclet numbers. Ku is a convection stabilization term for high Peclet numbers.
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3.2. Time step calculation

The algorithm presented above is conditionally stable with its stability depending on the time step used. So,
it is necessary to deduce a safe way to estimate the time step limits. The factors that determine the stability
are the element length, the velocity and the di�usivity coe�cient. A dimensional analysis of this variables leads
to the following form with time dimension, (22) and (23). These estimative takes in account respectively the
di�usive and convective e�ects.

∆td =
h

|U | (22)

∆tc =
h2

2k
(23)

According with O. C. Zienkiewicz and Vázques, 1999, the form present in eq. (24) respect both the di�usivity
and convective limits. A further discussion on the calculation of the time step is presented in Codina and
Zienkiewicz, 2002.

∆t =
∆td∆tc

∆td + ∆tc
(24)

4. Results

4.1. Single reaction species

This section present a comparison between the results obtained with the numerical method presented in last
section and the analytical solution for the case of a single reacting species. Twelve di�erent conditions were
simulated combining three di�erent di�usivity coe�cients, two decay coe�cients and two initial conditions.
Manson et al., 2000 studied the same problem using another numerical method.

Analytical solution for (2) is possible for the case of a single reacting species with a sudden release of mass
M in a steady �ow and uniform channel area. Equation below present the transient concentrations solution,
c(x, t) obtained if the boundary condition are given by the same equation when x equal 0.

c(x, t) =
M

A
√

(4π(D)t)
exp

(
− (x− ut)2

4Dt

)
exp(−kt) (25)
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The solution above is gaussian in space traveling with the convection velocity and have a variance given by
σ2(t) = 2Dt. The channel velocity is constant and equal 1 m/s resulting from a 10m3/s �ow in a channel with
10m2. Three di�usion coe�cients were used in this test case, 1, 5 and 100m2/s. These coe�cients are in accord
with those present in real rivers. The decay coe�cients used were equal to 0 and 0.693/day.

The numerical method is started with the distribution given by (25) with two initial variances σ2 = 37, 636m2

and σ2 = 180, 000m2. The numerical domain used had 120000 m in length and was divided in 1200 elements
with 100m each, the same element length used by Manson et al., 2000. The simulation time is equal 14400
seconds.

Figures (4.1), (4.1), (4.1) and (4.1) compare the numerical and analytical results. These �gures show the
remarkable agreement obtained for this case and a estimative for the error dimension is only possible when the
error in peak percentage is compared Tab. (1).

Table 1: Percentage error in peak

Case D k σ2 Error %
1 1 0.693 37636 0.099
2 5 0.693 37636 0.079
3 100 0.693 37636 0.082
4 1 0.693 180000 0.012
5 5 0.693 180000 0.045
6 100 0.693 180000 0.011
7 1 0.000 37636 0.097
8 5 0.000 37636 0.070
9 100 0.000 37636 0.081
10 1 0.000 180000 0.010
11 5 0.000 180000 0.035
12 100 0.000 180000 0.010
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Figure 1: Analytical and numerical comparison for k=0.683 and σ2 = 37636m2

The good results obtained for this �rst case suggest that the CBC algorithm can by used to simulate more
complex situations or a more long period of time. The computational cost is inexpensive considering that this
is a one dimensional problem so no e�orts were made to optimize or measure the simulation time.

4.2. Transport of a contaminant cloud with no reaction

In the present section the CBC algorithm is used to simulate the evolution of a cloud of non-reactive
component in a channel. In this problem the concentration is measured in two sections 5350 meters apart in the
channel, for more information concerning this problem see French, 1986. The measurement in the �rst section
is used as boundary condition for the numerical method. The channel velocity was measured as 0.59m/s. This
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Figure 2: Analytical and numerical comparison for k=0.683 and σ2 = 180000m2
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Figure 3: Analytical and numerical comparison for k=0.000 and σ2 = 37636m2
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Figure 4: Analytical and numerical comparison for k=0.000 and σ2 = 180000m2
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problem goal is estimate the di�usivity coe�cient that best �ts the numerical results with the experimental
ones.

Table (2) show the measurements for the two sections.

Table 2: Concentration data for section 1 and 2

Section 1 Section 2
Time in seconds Concentration Time in seconds Concentration

0 0.00 32 0
3 0.26 37 0
6 0.67 42 0.07
9 0.95 47 0.22
11 1.09 52 0.40
13 1.13 56 0.50
15 1.10 60 0.58
17 1.04 62 0.59
19 0.95 64 0.59
24 0.72 68 0.54
29 0.50 75 0.44
34 0.31 84 0.27
39 0.21 94 0.14
49 0.08 104 0.06
59 0.02 114 0.03
- - 124 0.025
- - 134 0.02
- - 144 0

The di�usivity coe�cient that best �ts the numerical with the experimental results is approximately 30m2/s,
that is very close to the coe�cient calculated by French, 1986 using a analytical method. It's important to
say that in this case this di�usivity coe�cient can not be considered the real di�usivity coe�cient that exits
in the river, in fact this coe�cient is a estimative for the mean of this coe�cient along the river. For this
simpli�cation and the di�culty to obtain accurate experimental measurements the numerical results can be
considered satisfactory.

4.3. Multiple interacting species

In 1979 an emergency in a factory in New-Zeland leads to a large amount of milk discharged in the Waipa
River. The milk was used as a water tracer transported in the river, data was measure for three �xed times
along the river for BOD and DO. The data collected in this incident was compared with numerical estimative
by Manson et al., 2000 and McBride and Rutherford, 1984 using di�erent numerical methods.

The experimental data provided by McBride and Rutherford, 1984 include spatial pro�le for BOD and DO
along the river for three times 11 hours apart. In order to validate the CBS algorithm the data obtained for
the second time will be used as time boundary condition and results obtained numerically for the last time will
be compared with the results measured in the last time. The same velocity and depth pro�les used by McBride
and Rutherford, 1984 were used in this work (26) and (28), with x in kilometers. The re-aeration rate k2 was
formulated according to the surface renewal model of O'Connor-Dobbins (27). k1 was considered as 1/day based
in McBride and Rutherford, 1984 and D was estimated as 10m2/s based in the same reference.

u = 0.09 + 0.002x for x < 30
u = −0.4 + 0.018x for x ≥ 30 (26)

k2 = 3.74
√

u

h3
(27)

h = 6− 0.08x (28)

7



Proceedings of the ENCIT 2006, ABCM, Curitiba � PR, Brazil � Paper CIT06-0951

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time in minutes

C
on

ce
nt

ra
tio

ns
 in

 g
/m

3

Numerical
Experimental

Figure 5: Analytical and numerical comparison for for concentration

For the aerobic condition when C > 0.1mg/l the Phelps assumption give by (29) was adopted for source
and sink terms.

Sl = −K1L

SC = k2(Cs − C)− αk1L (29)

in this equation L=river BOD; C=river DO; Cs=saturation river DO; k1= the river deoxygenation coe�cient,
k2(x)= the river reaeration coe�cien and alpha is the ratio of the river BODultimate to BOD.

For anoxic condition when C < 0.1g/m3 the modi�cations to Streeter-Phelps given by (30) where used.

Sl = −K2Cs

SC = 0 if αk1L > k2Cs

SC = k2(Cs − C)− αK1K if αk1L ≤ k2Cs (30)

Figure (4.3) show the experimental data for BOD and DO used as boundary condition for the numerical
problem and �gure (4.3) show the comparison between the numerical and experimental data. Considering all
the errors associated with the experimental measurement and all the assumptions made for estimate k2, k1, α
and the approximations for u and h the results can be considered satisfactory.

5. Conclusion and Discussions

In the �rst case studied in this paper the numerical method results were compared with an analytical solution
for twelve cases varying three parameters, di�usivity, decay coe�cient and initial state. The obtained results
are in remarkable good agreement with the analytical solution and indicate that the CBC algorithm can be
used in more complex situations and for simulate longer periods of time.

In the second case presented in this paper a comparison with experimental results is performed, a water
tracer was throw in a channel and measured in two section for a period of time. The results for the �rst section
were used as boundary conditions for the CBC method, the di�usivity coe�cient were calibrated to approximate
the numerical results in the second section with the experimental ones. It was noticed some di�erence between
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Figure 6: Experimental data for the second section
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Figure 7: Numerical and experimental data for the last section
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the results, but considering that the di�usivity coe�cient was taken as constant along the river and always
there exists errors associated with the experimental data the CBC algorithm behaved quite well.

The last case show a more realistically application where two species with reaction interact along a real
river. For this case is di�cult to estimate the CBS algorithm performance alone because the numerical method
is in�uenced by many other parameter that should be calibrated or modeled and moreover there is a error
associated with the experimental data collected. The best information provided by this case is the importance
of good modeling for the decays coe�cients and the right representation of the river domain and velocity as
well as the measured data.
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